Independence of Two Conformations of Sarcoplasmic Reticulum Ca2+-ATPase Molecules in Hydrolyzing Acetyl Phosphate A TWO-PAIR MODEL OF THE ATPase STRUCTURAL UNIT

1997 
Abstract The sarcoplasmic reticulum Ca2+-ATPase molecules have been shown to exist in two conformations (A and B) that result from intermolecular interaction of ATPase molecules (Nakamura, J., and Tajima, G. (1995) J. Biol. Chem. 270, 17350–17354). The A form binds two calcium ions noncooperatively, whereas the B form binds the calcium ions cooperatively. Here, we examined the independence of these two forms in the calcium-activated hydrolysis of acetyl phosphate (AcP) under asynchronous and synchronous conditions of theirE 1-E 2 transitions at 0–5 and 25 °C. Irrespective of their synchronism and temperature, the two forms hydrolyzed AcP due to calcium that was bound to each of the forms, indicating the independence of the two forms in hydrolyzing AcP. Taking into account the monomer-dimer transition of the ATPase molecules on the sarcoplasmic reticulum membrane accompanyingE 1-E 2 transition of the molecules (Dux, L., Taylor, K. A., Ting-Beall, H. P., and Martonosi, A. (1985) J. Biol. Chem. 260, 11730–11743), the two types of molecules seem to independently carry out such monomer-dimer transition of the same type of molecules. Two pairs, each consisting of the same type of molecules, are suggested to be the structural unit of the ATPase molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []