Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload — Role of respiratory chain complex activity

2012 
Abstract Pressure overload induced heart failure affects cardiac mitochondrial function and leads to decreased respiratory capacity during contractile dysfunction. A similar cardiac mitochondrial dysfunction has been demonstrated by studies which induce heart failure through myocardial infarction or pacing. These heart failure models differ in their loading conditions to the heart and show nevertheless the same cardiac mitochondrial changes. Based on these observations we speculated that a workload independent mechanism may be responsible for the impairment in mitochondrial function after pressure overload, which may then also affect the skeletal muscle. We aimed to characterize changes in mitochondrial function of skeletal muscle during the transition from pressure overload (PO) induced cardiac hypertrophy to chronic heart failure. PO by transverse aortic constriction caused compensated hypertrophy at 2 weeks, HF with normal ejection fraction (EF) at 6 and 10 weeks, and hypertrophy with reduced EF at 20 weeks. Cardiac output was normal at all investigated time points. PO did not cause skeletal muscle atrophy. Mitochondrial respiratory capacity in soleus and gastrocnemius muscles showed an early increase (up to 6 weeks) and a later decline (significant at 20 weeks). Respiratory chain complex activities responded to PO in a biphasic manner. At 2 weeks, activity of complexes I and II was increased. These changes pseudo-normalized within the 6–10 week interval. At 20 weeks, all complexes showed reduced activities which coincided with clinical heart failure symptoms. However, both protein expression and supercomplex assembly (Blue-Native gel) remained normal. There were also no relevant changes in mRNA expression of genes involved in mitochondrial biogenesis. This temporal analysis reveals that mitochondrial function of skeletal muscle is changed early in the development of pressure overload induced heart failure without being directly influenced by an increased loading condition. The observed early increase and the later decline in respiratory capacity can be explained by concomitant activity changes of complex I and complex II and is not due to differences in gene expression or supercomplex assembly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    23
    Citations
    NaN
    KQI
    []