Oxidative stress and DNA damage in zebrafish liver due to hydroxyapatite nanoparticles-loaded cadmium

2018 
Abstract This study investigated the acute and sub-acute toxicity responses in zebrafish following their exposure to hydroxyapatite-loaded cadmium nanoparticles (nHAP-Cd). The results indicate that cadmium chloride (Cd 2+ ), 20 nm nHAP-Cd (nHAP 20 -Cd), and 40 nm nHAP-Cd (nHAP 40 -Cd) caused toxicity in zebrafish; the toxicity levels were in the following order: Cd 2+  > nHAP 20 -Cd > nHAP 40 -Cd. Furthermore, nHAP-Cd showed level II grade of acute toxicity in zebrafish; the gradation was done on the guidelines of the Organization for Economic Co-operation and Development 203. We also found that Cd 2+ ions and nHAP-Cd affected the malondialdehyde (MDA) levels and membrane permeability of zebrafish livers; these effects were compliant with the changes in antioxidant levels. The results of enzyme assays indicate the following notion: following the exposure of zebrafish to 0.12–0.93 mg/L nHAP-Cd, the activities of peroxidase, superoxide dismutase, and catalase enzymes increased significantly. Moreover, the content of anti-superoxide anion also increased substantially. This increasing trend of enzymatic activity was observed until the concentration of nHAP-Cd reached 1.86 mg/L nHAP-Cd. By increasing the concentration of both Cd 2+ and nHAP-Cd, we found that levels of DNA damage had increased substantially in zebrafish liver; this effect was visualized by performing comet assay.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    24
    Citations
    NaN
    KQI
    []