Mechanical intercellular communication via matrix-borne cell force transmission during vascular network formation

2021 
Intercellular communication is critical to the development and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, we utilized synthetic, electrospun fibrous matrices in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during the assembly of microvascular networks. We found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional migration of neighboring ECs towards each other prior to the formation of stable cell-cell connections. We also identified a critical role for intracellular calcium signaling mediated by focal adhesion kinase and TRPV4 during MIC that extends to multicellular assembly of vessel-like networks in 3D fibrin hydrogels. The results presented here are critical to the design of biomaterials that support cellular self-assembly for tissue engineering applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    0
    Citations
    NaN
    KQI
    []