Experimental Evaluation and Finite-Element Simulations of Explosive Airblast Tests on Clay Soils

2016 
AbstractThis study examined the effects of small-scale airblast experiments on clay soils and compared experimental results with numerical solutions obtained through finite-element simulations. Thirty-three suspended explosive blasts were conducted above clay soils with explosive masses ranging from 0.9 to 100.9 g and suspended heights ranging from 2.5 to 7.6 cm. The experiments were instrumented with airblast sensors and subsurface triaxial geophones to measure vibration energy and air overpressure from the blast events. Laboratory tests were conducted on the experimental soils to obtain geotechnical and shear strength soil properties. Two-dimensional (2D), arbitrary Lagrangian Eulerian (ALE) finite-element simulations were performed using a finite-element software program and compared with the experimental results. Soils were modeled using the Federal Highway Administration (FHWA) soil material model. Air overpressure, ground vibration, and crater geometry data obtained from the experimental blasts were...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    7
    Citations
    NaN
    KQI
    []