Impacts of Iron Metabolism Dysregulation on Alzheimer's Disease.
2021
BACKGROUND Iron plays an important role in maintaining cell survival, with normal iron trafficking known to be regulated by the ceruloplasmin-transferrin (Cp-Tf) antioxidant system. Disruption to this system is thought to be detrimental to normal brain function. OBJECTIVE To determine whether an imbalance of iron and the proteins involved in its metabolism (ceruloplasmin and transferrin) are linked to Alzheimer's disease (AD) and to the expression of amyloid-beta (Aβ) peptide 1-42 (Aβ 1-42), which is a major species of Aβ, and the most toxic. METHODS We evaluated the concentrations of iron, calcium, magnesium, and Aβ 1-42 in the cerebrospinal fluid (CSF) of patients with AD and cognitively normal controls. Correlations between the components of the Cp-Tf antioxidant system in plasma were studied to determine the role of peripheral blood in the onset and/or development of AD. We used commercial ELISA immunoassays to measure Aβ 1-42, immunoturbidimetry to quantify ceruloplasmin and transferrin, and colorimetry to quantify iron, calcium, and magnesium. RESULTS We found that the AD group had lower CSF concentrations of Aβ 1-42 (p < 0.001) and calcium (p < 0.001), but a higher CSF concentration of iron (p < 0.001). Significantly lower plasma concentrations of ceruloplasmin (p = 0.003), transferrin (mean, p < 0.001), and iron (p < 0.001) were observed in the AD group than in cognitively normal adults. Moreover, we found a strong interdependence between most of these components. CONCLUSION Iron dyshomeostasis has a crucial role in the onset of AD and/or its development. Correcting metal misdistribution is an appealing therapeutic strategy for AD.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
76
References
1
Citations
NaN
KQI