Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.

2013 
ing the early stages of the development process would greatly reduce the drug attrition rate in the pharmaceutical industry but would require the implementation of new research and development strategies. In this regard, several in silico models have been proposed as alternative means in prioritizing drug candidates. Because the accuracy and utility of a predic tive model rests largely on how to annotate the potential of a drug to cause DILI in a reliable and consistent way, the Food and Drug Administration–approved drug labeling was given prominence. Out of 387 drugs annotated, 197 drugs were used to develop a quantitative structure-activity relationship (QSAR) model and the model was subsequently challenged by the left of drugs serving as an external validation set with an overall pre diction accuracy of 68.9%. The performance of the model was further assessed by the use of 2 additional independent valida tion sets, and the 3 validation data sets have a total of 483 unique drugs. We observed that the QSAR model’s performance varied for drugs with different therapeutic uses; however, it achieved a better estimated accuracy (73.6%) as well as negative predictive value (77.0%) when focusing only on these therapeutic catego ries with high prediction confidence. Thus, the model’s appli
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    62
    Citations
    NaN
    KQI
    []