Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation.

2020 
Abstract Bioremediation is the most effective green protocol for degradation of environmental contaminants. Present study involves carrier free urease immobilization with synthesis of its new crosslinked aggregates using two different crosslinkers, divinyl benzene (DVB) and tripropyleneglycol dimethacrylate (TPGDA) via free radical mechanism. Resulting crosslinked ureases were further converted to nanoform (CLUNAs) using solvent evaporation technique. The activity of free and the crosslinked ureases was studied as a function of operational parameters viz. temperature (20–80), pH (2–11) and substrate concentration (5–20 mM) using urea as substrate at contact time of 10 min. Storability study of the pristine urease and CLUNAs was carried out for 40 days, and the CLUNAs were reused in 10 repeat cycles to assess their reusability. Isoproturone degradation was studied under the above-cited range of pH and temperature and results were recorded after 24 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    4
    Citations
    NaN
    KQI
    []