A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation

2020 
Callus browning, a common trait derived from the indica rice cultivar (Oryza sativa L.), is a challenge to transformation regeneration. Here, we report the map-based cloning of BROWNING OF CALLUS1 (BOC1) using a population derived from crossing Teqing, an elite indica subspecies exhibiting callus browning, and Yuanjiang, a common wild rice accession (Oryza rufipogon Griff.) that is less susceptible to callus browning. We show that BOC1 encodes a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) protein. Callus browning can be reduced by appropriate upregulation of BOC1, which consequently improves the genetic transformation efficiency. The presence of a Tourist-like miniature inverted-repeat transposable element (Tourist MITE) specific to wild rice in the promoter of BOC1 increases the expression of BOC1 in callus. BOC1 may decrease cell senescence and death caused by oxidative stress. Our study provides a gene target for improving tissue culturability and genetic transformation. Callus browning heavily affects indica rice transformation regeneration. Here, the authors show transposon insertion in the promoter of BOC1 gene, encoding a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE protein, can upregulate its expression and decrease callus browning in cultivated rice by releasing oxidative stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    11
    Citations
    NaN
    KQI
    []