Coulomb excitation of and a change in structure approaching N = Z = 40

2021 
Background: Nuclei approaching are known to exhibit strongly deformed structures and are thought to be candidates for shape coexistence. In the krypton isotopes, are poorly characterized, preventing an understanding of evolving deformation approaching . Purpose: The present work aims to determine electric quadrupole transition strengths and quadrupole moments of in order to better characterize their deformation. Conclusions: Comparison of measured and values indicates that neutron-deficient () isotopes of krypton are closer to axial deformation than other isotopic chains in the mass region. A continuation of this trend to higher may result in Sr and Zr isotopes exhibiting near-axial prolate deformation. Methods: Sub-barrier Coulomb excitation was employed, impinging the isotopes of krypton on and targets. Utilizing a semiclassical description of the safe Coulomb-excitation process matrix elements could then be determined. Results: Eleven new or improved matrix elements are determined in and seven in . The new value in disagrees with the evaluated value by , which can be explained in terms of deficiencies in a previous Coulomb-excitation analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []