Stochastic Carbon Dioxide Forecasting Model for Concrete Durability Applications

2021 
Over the Earth’s history, the climate has changed considerably due to natural processes affecting directly the earth. In the last century, these changes have perpetrated global warming. Carbon dioxide is the main trigger for climate change as it represents approximately up to 80% of the total greenhouse gas emissions. Climate change and concrete carbonation accelerate the corrosion process increasing the infrastructure maintenance and repair costs of hundreds of billions of dollars annually. The concrete carbonation process is based on the presence of carbon dioxide and moisture, which lowers the pH value to around 9, in which the protective oxide layer surrounding the reinforcing steel bars is penetrated and corrosion takes place. Predicting the effective retained service life and the need for repairs of the concrete structure subjected to carbonation requires carbon dioxide forecasting in order to increase the lifespan of the bridge. In this paper, short term memory process models were used to analyze a historical carbon dioxide database, and specifically to fill in the missing database values and perform predictions. Various models were used and the accuracy of the models was compared. We found that the proposed Stochastic Markovian Seasonal Autoregressive Integrated Moving Average (MSARIMA) model provides \(R^{2}\) value of 98.8%, accuracy in forecasting value of 89.7% and a variance in the value of the individual errors of 0.12. When compared with the CO2 database values, the proposed MSARIMA model provides a variance value of −0.1 and a coefficient of variation value of −8.0\({\text{e}}^{ - 4}\).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []