THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING

2009 
We consider symmetric hypothesis testing in quantum statistics, where the hypotheses are density operators on a finite-dimensional complex Hilbert space, representing states of a finite quantum system. We prove a lower bound on the asymptotic rate exponents of Bayesian error probabilities. The bound represents a quantum extension of the Chernoff bound, which gives the best asymptotically achievable error exponent in classical discrimination between two probability measures on a finite set. In our framework, the classical result is reproduced if the two hypothetic density operators commute. Recently, it has been shown elsewhere [Phys. Rev. Lett. 98 (2007) 160504] that the lower bound is achievable also in the generic quantum (noncommutative) case. This implies that our result is one part of the definitive quantum Chernoff bound.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    184
    Citations
    NaN
    KQI
    []