Synthesis and Characterization of Metal Nanoparticles and the Formation of Metal-Polymer Nanocomposites

2002 
Abstract : Metal nanoparticles are highly prone to oxidation due to their high surface energy and affinity for oxygen which can lead to the complete oxidation of the particles. Studying and utilizing the unique properties of metal nanoparticles requires minimizing their interaction with the atmosphere. We have used the co-condensation technique to synthesize suspensions of metal nanoparticles in isopropanol. The solvent protects the nanoparticles from the atmosphere and minimizes agglomeration of the nanoparticles. The particles showed a lognormal distribution and the average particle size was below 20nm. Polymer-metal nanocomposites were made by dispersing the metal nanoparticles in PMMA matrix by spin coating and solution casting. Adherent films fibers and free standing films could be obtained by varsing the process conditions. The SEM images show that the nanoparticles in the spun coated films were non-agglomerated and well dispersed over a wide area. Morphology of the spun coated films was different from the solution cast films. Electrically conducting films having interconnected silver particle network could be obtained. Cytotoxicity studies show that the silver nanoparticles and the PMMA-Ag nanocomposite films are antibacterial in nature. We have also dispersed the nanoparticle into pump oil and measured the thermal conductivity of the resultant mixture. The thermal conductivity of the oil could be increased by over 50% by adding an extremely small fraction of the silver nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    4
    Citations
    NaN
    KQI
    []