Concurrent Treatment with Anti-DLL4 Enhances Antitumor and Proapoptotic Efficacy of a γ-Secretase Inhibitor in Gastric Cancer

2018 
Abstract The Notch signaling pathway has been identified as a therapeutic target for cancers. γ-Secretase inhibitors (GSIs) have been progressively recognized as potential anticancer drugs. The present study aimed to investigate the effects of anti-delta like legend 4 (anti-DLL4) treatment on the anticancer efficacy of GSIs in gastric cancer. SGC-7901-GFP human gastric cancer cells were tested for DLL4 expression by rosette formation test and immunofluorescence, and then were treated with anti-DLL4 antibody N-[N-(3,5-difluorophenacetyl)-L-ananyl]-S-phenylglycine t-butyl ester (DAPT, a type of GSI), or a combination of anti-DLL4 antibody and DAPT. The effects of in vitro treatments on cell apoptosis, cell cycle, and cell invasion were analyzed. For in vivo study, an orthotopic mouse model of gastric cancer was established with green fluorescence expressing SGC-7901. Ultrasound targeted microbubble destruction was used to treat tumor-bearing mice with anti-DLL4 antibody conjugated microbubbles, DAPT, and a combination of the two. Real-time fluorescence imaging was performed to assess tumor cell inhibition in each group. Following in vivo treatments, apoptosis of tumor cells and the expression of apoptosis-related genes BAX, Bcl-2, and P53 were detected by TUNEL and i mmunohistochemical staining. In vivo combined treatment of anti-DLL4 and DAPT led to a higher rate of cell apoptosis and greater inhibition of cell invasion than that observed with DAPT treatment alone. DAPT and anti-DLL4 combination therapy resulted in decreased cell distribution at G1 phase and increased cell distribution at S phase, compared to the untreated control group ( P In vivo combined therapy with anti-DLL4 and DAPT significantly increased tumor growth inhibition and tumor cell apoptosis when compared to DAPT therapy alone ( P P P in vitro and in vivo .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []