A mathematical modeling approach to explore kinetics of Chimeric Antigen Receptor (CAR) T-cell Response in glioma: the CARRGO model

2019 
Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the treatment of hematological cancers and is currently being investigated for solid tumors including high-grade glioma brain tumors. There is a desperate need to quantitatively study the factors that contribute to the efficacy of CAR T-cell therapy in solid tumors. In this work we use a mathematical model of predator-prey dynamics to explore the kinetics of CAR T-cell killing in glioma: the Chimeric Antigen Receptor t-cell treatment Response in GliOma (CARRGO) model. The model includes rates of cancer cell proliferation, CAR T-cell killing, CAR T-cell proliferation and exhaustion, and CAR T-cell persistence. We use patient-derived and engineered cancer cell lines with an in vitro real-time cell analyzer to parameterize the CARRGO model. We observe that CAR T-cell dose correlates inversely with the killing rate and correlates directly with the net rate of proliferation and exhaustion. This suggests that at a lower dose of CAR T-cells, individual T-cells kill more cancer cells but become more exhausted as compared to higher doses. Furthermore, the exhaustion rate was observed to increase significantly with tumor growth rate and was dependent on level of antigen expression. The CARRGO model highlights nonlinear dynamics involved in CAR T-cell therapy and provides novel insights into the kinetics of CAR T-cell killing. The model suggests that CAR T-cell treatment may be tailored to individual tumor characteristics including tumor growth rate and antigen level to maximize therapeutic benefit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []