Multimodal single-cell analysis of cutaneous T cell lymphoma reveals distinct sub-clonal tissue-dependent signatures

2021 
Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of mature T cell neoplasms characterized by the accumulation of clonal malignant CD4+ T cells in the skin. The most common variant of CTCL, Mycosis Fungoides, is confined to the skin in early stages but can be accompanied by extracutaneous dissemination of malignant T cells to the blood and lymph nodes in advanced stages of disease. Sezary Syndrome, a leukemic form of disease is characterized by significant blood involvement. Little is known about the transcriptional and genomic relationship between skin and blood residing malignant T cells in CTCL. To identify and interrogate malignant clones in matched skin and blood from leukemic MF and SS patients, we combine T cell receptor clonotyping, with quantification of gene expression and cell surface markers at the single cell level. Our data reveals clonal evolution at a transcriptional and genetic level within the malignant populations of individual patients. We highlight highly consistent transcriptional signatures delineating skin-derived and blood-derived malignant T cells. Analysis of these two populations suggests that environmental cues, along with genetic aberrations, contribute to transcriptional profiles of malignant T cells. Our findings indicate that the skin microenvironment in CTCL promotes a transcriptional response supporting rapid malignant expansion, as opposed to the quiescent state observed in the blood, potentially influencing efficacy of therapies. These results provide insight into tissue-specific characteristics of cancerous cells and underscore the need to address the patients' individual malignant profiles at the time of therapy to eliminate all sub-clones.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    2
    Citations
    NaN
    KQI
    []