Ordered two-dimensional porous Co 3 O 4 nanosheets as electrocatalysts for rechargeable Li-O 2 batteries

2019 
Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available energy densities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with different morphologies (ordered two-dimensional porous nanosheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcination methods. Ordered two-dimensional Co3O4 nanosheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10,417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1,000 mAh/g. Open image in new window
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    11
    Citations
    NaN
    KQI
    []