Anodic electrolytic-plasma borocarburizing of low-carbon steel

2017 
The effect of conditions of anodic electrolytic-plasma borocarburizing of low-carbon steel on its structure and properties has been studied. It has been established that the effect of the treatment conditions on the thickness of a modified layer is explained by the competition of boron and carbon diffusion and steel-sample oxidation. The mechanism of transport of saturating components from electrolyte into steel is described. An electrolyte composition (10–15% sal ammoniac, 5% boric acid, and 4–8% glycerine) and treatment modes (800–900°C, 5 min) are suggested that produce a hardened surface layer with a thickness of up to 0.15 mm and a microhardness of 1000 HV and reduce surface roughness by an order of magnitude. Anodic electrolytic-plasma borocarburizing makes it possible to reduce the coefficient of friction by 36%, steel-wear rate by an order of magnitude, and corrosion rate by 2.5 times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    7
    Citations
    NaN
    KQI
    []