Acousto-optic modulation in magnetised diffusive semiconductors

2002 
The modulation of an intense electromagnetic beam induced by the acousto-optic (AO) effect has been analysed in a transversely magnetised semiconductor-plasma medium. The effect of carrier diffusion on the threshold field and gain profile of the modulated wave has been extremely investigated using coupled mode theory. The origin of the AO interaction is assumed to lie in the induced nonlinear diffusion current density of the medium. By considering the modulation process as a four wave parametric interaction an expression for effective third-order AO susceptibility describing the phenomena has been deduced. The modulation is greatly modified by propagation characteristics such as dispersion and diffraction due to dielectric relaxation of the acoustic mode. The threshold pump field and the steady state growth rates are estimated from the effective third-order polarisation in the plasma medium. Analytical estimation reveals that in the presence of enhanced diffusion due to excess charge carriers the modulated beam can be effectively amplified in a dispersionless acoustic wave regime. The presence of an external dc magnetic field is found to be favourable for the onset of diffusion induced modulational amplification of the modulated wave in heavily doped regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    4
    Citations
    NaN
    KQI
    []