Simultaneous Determination of Streptomycin and Oxytetracycline using a Oracet-Blue/Silver-Nanoparticle/Graphene-Oxide/Modified Screen-Printed Electrode.

2020 
In this paper, an electrochemical technique is introduced for the determination of streptomycin (STR) in the presence of oxytetracycline (OTC) in milk samples. A novel bifunctional modified screen-printed electrode (SPE) modified with oracet blue, silver nanoparticles, and graphene oxide (OB/SNPs/GO/SPE) was fabricated. The modified electrode plays a catalyzer role for electrooxidation of STR at pH = 7.0 and reveals a facile a separation between the oxidation peaks of STR and OTC. Calculation of kinetic parameters such as the electron transfer coefficient α and the heterogeneous rate constant k´ of STR at the OB/SNPs/GO/SPE as 8.1 ± 0.07 cm s−1 and 0.32 have been obtained based on the theoretical model of Andrieux and Saveant. A differential pulse voltammetric measurement demonstrates two linear dynamic ranges, 0.4 to 240.0 nM and 240.0 to 720.0 nM and a detection limit of 0.17 nM for STR. The sensitivities of the OB/SNPs/GO/SPE towards the oxidation of STR in the absence and presence of OTC were 2.625 × 10−1 and 2.633 × 10−1 µA/µM, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []