Solvent-Assisted Preparation of High-Performance Mesoporous CH₃NH₃Pbl₃ Perovskite Solar Cells.

2016 
Organometal trihalide perovskite based solar cells have attracted great attention worldwide since their power conversion efficiency (PCE) have risen to over 15% within only 3 years of development. Comparing with other types of perovskite solar cells, mesostructured perovskite solar cells based on CH₃NH₃Pbl₃ as light harvesting material have already demonstrated remarkable advance in performance and reproducibility. Here, we reported a mesoscopic TiO₂/CH₃NH₃Pbl₃ heterojunction solar cell with uniform perovskite thin film prepared via solvent-assisted solution processing method. The best performing device delivered photocurrent density of 20.11 mA cm⁻², open-circuit voltage of 1.02 V, and fill factor of 0.70, leading to a PCE of 14.41%. A small anomalous hysteresis in the J-V curves was observed, where the PCE at forward scan was measured to be 84% of the PCE at reverse scan. Based on a statistical analysis, the perovskite solar cells prepared by the reported method exhibited reproducible and high PCE, indicating its promising application in the fabrication of low-cost and high-efficiency perovskite solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []