Quantum-chemical modeling of smectite clays

1982 
A self-consistent charge extended Hueckel program is used in modeling isomorphic substitution of Al(3+) by Na(+), K(+), Mg(2+), Fe(2+), and Fe(3+) in the octahedral layer of a dioctahedral smectite clay, such as montmorillonite. Upon comparison of the energies involved in the isomorphic substitution, it is found that the order for successful substitution is as follows: Al(3+), Fe(3+), Mg(2+), Fe(2+), Na(+), which is equivalent to Ca(2+), and then K(+). This ordering is found to be consistent with experimental observation. The calculations also make it possible to determine the possible penetration of metal ions into the clay's 2:1 crystalline layer. For the cases studied, this type of penetration can occur at elevated temperatures into regions where isomorphic substitution has occurred with metal ions that bear a formal charge of less than 3+. The computed behavior of the electronic structure in the presence of isomorphic substitution is found to be similar to behavior associated with semiconductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    45
    Citations
    NaN
    KQI
    []