A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry

2020 
Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerS(P76-26) oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerS(P76-26) revealed that it forms a ring with a wide central pore and radially arrayed helix-turn-helix domains. The structure further showed that these helix-turn-helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerS(P76-26) can bind DNA. Finally, the TerS(P76-26) structure lacked the conserved C-terminal beta-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal beta-barrel domain is not required for TerS(P76-26) to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerS(P76-26), revealing key differences between this thermophilic phage and its mesophilic counterparts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []