Nitrogen partitioning between branched-chain amino acids and urea cycle enzymes sustains renal cancer progression

2021 
Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we combined multi-omics datasets of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) and generated a computational tool to explore the metabolic landscape during cancer progression. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism is required to maintain the aspartate pool in cancer cells across all tumor stages. We also provide evidence that metastatic renal cancer cells reactivate argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, to enable invasion in vitro and metastasis in vivo. Overall, our study provides the first comprehensive elucidation of the molecular mechanisms responsible for metabolic flexibility in ccRCC, paving the way to the development of therapeutic strategies based on the specific metabolism that characterizes each tumor stage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []