Optimization and performance analysis of a multilayer structure for daytime radiative cooling

2020 
Abstract Daytime radiative cooling has drawn much attention recently because a target surface can be passively maintained at sub-ambient temperature. In order to implement a daytime radiative cooling device (simply ’radiative cooler’), strong thermal emission should be focused in the mid-infrared regime (8–13 μ m), called ’atmospheric transparent window’. At the same time, absorption of the solar irradiation should be minimized. In the present study, for optimal performance of daytime radiative cooling, a mixed-integer genetic algorithm was employed to achieve maximal infrared emission as well as minimal solar absorption. The combination of total number of layer, materials, and thickness of each layer in the multilayered radiative cooler were determined through optimization. The optimized multilayer structure exhibited the spectrally-averaged (in the 8–13 μ m wavelength range) normal emissivity value of 0.96 and the solar-weighted absorptivity of 0.03. The corresponding net cooling power was found to be 101.0 W / m 2 , and a sub-ambient cooling temperature of 11 . 2 ∘ C (i.e., below ambient temperature) was predicted in daytime at air-mas 1.5 condition. Besides, the mechanism of enhanced emission in the infrared region and suppressed absorption in the solar spectrum were thoroughly investigated. We also derived the expected performance of the optimized radiative cooler for various conditions of the environmental parameters, such as convection heat transfer coefficient, ambient temperature, and precipitable water level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    5
    Citations
    NaN
    KQI
    []