A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses.

2021 
The COVID-19 pandemic caused by SARS-CoV-2 and variants has led to significant mortality. We recently reported that an RNA-targeting CRISPR-Cas13 system, termed prophylactic antiviral CRISPR in human (PAC-MAN), offered an antiviral strategy against SARS-CoV-2 and influenza A virus. Here, we expand in silico analysis to use PAC-MAN to target a broad spectrum of human- or livestock-infectious RNA viruses with high specificity, coverage, and predicted efficiency. Our analysis reveals that a minimal set of 14 crRNAs is able to target >90% of human-infectious viruses across 10 RNA virus families. We predict that a set of 5 experimentally validated crRNAs can target new SARS-CoV-2 variant sequences with zero mismatches. We also build an online resource (crispr-pacman.stanford.edu) to support community use of CRISPR-Cas13 for broad-spectrum RNA virus targeting. Our work provides a new bioinformatic resource for using CRISPR-Cas13 to target diverse RNA viruses in order to facilitate development of CRISPR-based antivirals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []