Coupling light to a nuclear spin gas with a two-photon linewidth of five millihertz

2021 
Nuclear spins of noble gases feature extremely long coherence times but are inaccessible to optical photons. Here we realize a coherent interface between light and noble-gas spins that is mediated by alkali atoms. We demonstrate the optical excitation of the noble-gas spins and observe the coherent back-action on the light in the form of high-contrast two-photon spectra. We report on a record two-photon linewidth of 5$\pm$0.7 mHz (millihertz) above room-temperature, corresponding to a one-minute coherence time. This experiment provides a demonstration of coherent bi-directional coupling between light and noble-gas spins, rendering their long-lived spin coherence accessible for manipulations in the optical domain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []