Experiment on Recovery of Phosphorus from Aqueous Solution by Calcium Doped Fe3O4

2019 
: Adsorption is an economical and effective method for recovering phosphate from wastewater. In order to improve the adsorption capacity of Fe3O4 for phosphate and for easy separation from water under the action of an external magnetic field, CaO2 was used in this study as an oxidant to partially oxidize Fe2+. A phosphorus recovery adsorbent, Ca doped Fe3O4 (CMIO), was prepared and was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and vibrating sample magnetometer (VSM) techniques. The results showed that CMIO had a Ca2+ doped Fe3O4 crystal structure with a saturation magnetization of 38.82 emu·g-1, which was easily separated from water by using an external magnetic field. The phosphorus adsorption capacity of the CMIO decreased with an increase of pH value. When pH=2 and T=25℃, the maximum adsorption capacity was 24.10 mg·g-1, which is almost five times the adsorption capacity of pure Fe3O4. The phosphorus adsorption of CMIO was in accord with the Langmuir isotherm adsorption model, and the adsorption process followed the pseudo-second order kinetic model. The complexation of phosphate occurred on the inner surface of the CMIO to form a ≡Fe-Ca-P ternary complex, which can adsorb phosphorus. Compared with other anions in the aqueous solution, CMIO had good adsorption selectivity to PO43-, and the adsorbed PO43- could be desorbed by NaOH solution.The quality loss of the CMIO was less than 4% once, and multiple recycling was possible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []