Evaluating the effect of CFH-12® and Phoslock® on phosphorus dynamics during anoxia and resuspension in shallow eutrophic lakes

2020 
Abstract Laboratory experiments with intact sediment cores from a hypertrophic very windy exposed shallow lake were conducted to assess the combined effect of anoxia and sediment resuspension on phosphorus (P) dynamics after adding different P adsorbents (CFH-12® and Phoslock®). In this study we hypothesize that the addition of geoengineering materials will increase P retention in the sediment even at the worst physic-chemical conditions such as anoxia and sediment resuspension. Both adsorbents significantly reduced the P release from the sediments after a 54 days-anoxic incubation period (CFH-12® by 85% and Phoslock® by 98%) and even after resuspension events (CFH-12® by 84% and Phoslock® by 88%), indicating that both adsorbents are suitable P inactivating agents for restoring shallow eutrophicated lakes under such circumstances. CFH-12® did not release dissolved Fe to the water column neither after the anoxic period nor after resuspension events compared to Control (no adsorbents addition). The La concentration was significantly higher in Phoslock® (3.5-5.7 μg L-1) than in Control at all sampling days but it was not affected by resuspension. The high efficiency in P removal under anoxia and resuspension, the low risk of toxicity and the high maximum adsorption capacity makes CFH-12® a promising adsorbent for lake restoration. Nevertheless, further research about the influence of other factors (i.e. pH, alkalinity, interfering substances or strict anoxia) on the performance of CFH-12® is needed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []