Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity

2016 
This paper presents a novel mirror-tunable laser interference system for the wafer-scale patterning (>4-in.) of submicron grating structures with a flexible periodicity (200–1000 nm) in a compact and cost-effective manner. The proposed system guides and splits the laser beam into two expanded light beams propagating in a downward direction to be reflected by rotatable ultraviolet mirrors to produce interference patterns. The incident angle of two light beams can be controlled by rotating the mirrors until they match the targeted periodicity of the grating, without the need to reconfigure the optical paths. The fact that light polarization changes with the rotation angle of the mirrors necessitates the use of a half-wave plate along each optical path to adjust the direction of polarization perpendicular to the plane of incident light. The proposed system enables large-area fabrication and wide-range grating tunability, making it highly useful for applications that require wafer-scale patterning of submicro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    9
    Citations
    NaN
    KQI
    []