The remote-oxyfunctionalization of unactivated carbons in (5β)-3-oxobile acids by 2,6-dichloropyridine N-oxide catalyzed by ruthenium–porphyrin and HBr: a direct lactonization at C-20

2004 
Remote-oxyfunctionalization induced by 2,6-dichloropyridine N-oxide (DCP N-oxide) as an oxygen donor and a (5,10,15,20-tetramesitylporphyrinate) ruthenium(II) carbonyl complex (Ru-porphyrin) and HBr as catalysts was examined for a series of methyl ester-peracetylated derivatives of (5β)-3-oxobile acids. Using the DCP-N-oxide/Ru-porphyrin/HBr system, 5β-hydroxylation predominated for the substrates having a 12-acetoxyl substituent due to steric hindrance, but the presence of a 7-acetoxyl substituent decreased the reactivity of the 5β-position allowing for the competitive (20S)-20-oxyfunctionalization, subject to electronic constraints. A variety of novel 5β-hydroxylation and (20S)-24,20-γ-lactonization products, as well as their double-oxyfunctionalization and dehydration products, were obtained in one-step. The alkaline hydrolysis of the γ-lactones gave the corresponding stereoselective (20S)-20-hydroxy-carboxylic acids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    14
    Citations
    NaN
    KQI
    []