Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries

2021 
Abstract Stable electrode-electrolyte interphases on both electrodes are indispensable to warrant cycling stability of high-voltage Li-metal batteries. Here, we reveal a unique cooperative reaction mechanism to form protective interphase layers on both Li-metal anode and high-voltage cathodes, which is exemplified by a multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene (PFPN). The F-rich PFPN first reacts with Li-metal anode to form LiF-rich solid electrolyte interphase (SEI), which stabilizes the Li deposition/dissolution processes. Meanwhile, the in-situ generated PFPN derivatives with a de-fluorated structure are prone to be oxidized on cathode, forming a robust cathode-electrolyte interphase (CEI) to prevent electrolyte oxidation and electrode degradation at high voltage. With PFPN to harness the aggressive battery electrodes, Li-metal batteries with high-voltage LiCoO2 (4.5 V) and LiNi0.5Mn1.5O2 (4.9 V) cathodes exhibit improved cycling stability and rate capability. In particular, the LiNi0.5Mn1.5O2|Li full cell with limited Li supply (N/P =7.6) demonstrates outperformed capacity retention of 90.7 % after 100 cycles, which is almost twice that of the cell using PFPN-free conventional electrolyte (47.5 %).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []