Infrared, Raman and density functional characterization and structural study of 2-Nitro-2-phenyl-propane-1,3-diol

2017 
Abstract Nitro compound and nitro derivatives are industrially important to produce rubber and agricultural chemicals. In this study, one of the promising derivatives of nitro compound 2-Nitro-2-phenyl-propane-1,3-diol (2NPP) is examined in detail. FT-Infrared and dispersive Raman spectra of 2NPP (C 9 H 11 NO 4 ) were respectively recorded in 4000–10 cm −1 and 4000-100 cm −1 . The bond distances and angles, conformational distributions, vibrational frequencies and the assignment of each mode, some thermodynamic parameters and reactivity descriptors: total energy, hardness, chemical potential, electrophilicity index, electronegativity, frontier orbitals energy gap of 2NPP were investigated by using DFT/B3LYP method with 6–31++G (d,p) basis set. In order to locate the global minimum on the potential energy surface of 2NPP, a beforehand conformational examinations were carried out using Spartan 10 along with semi-emprical PM6 method. The results of conformational analyses showed that there are five possible conformations having energies under 2 kcal/mol. Comparison of the theoretical and experimental results clearly indicates that density functional hybrid B3LYP/6–31++G (d,p) level of theory can be used to predict vibrational frequencies and structural parameters of 2NPP. Further, C1 geometry is considered to be the global minimum conformation of 2NPP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []