The Role of Asymmetries in Thermal Nonequilibrium

2019 
Thermal nonequilibrium (TNE) is a fascinating situation that occurs in coronal magnetic flux tubes (loops) for which no solution to the steady-state fluid equations exists. The plasma is constantly evolving even though the heating that produces the hot temperatures does not. This is a promising explanation for isolated phenomena such as prominences, coronal rain, and long-period pulsating loops, but it may also have much broader relevance. As known for some time, TNE requires that the heating be both (quasi-)steady and concentrated at low coronal altitudes. Recent studies indicate that asymmetries are also important, with large enough asymmetries in the heating and/or cross-sectional area resulting in steady flow rather than TNE. Using reasonable approximations, we have derived two formulae for quantifying the conditions necessary for TNE. As a rough rule of thumb, the ratio of apex to footpoint heating rates must be less than about 0.1, and asymmetries must be less than about a factor of 3. The precise values are case-dependent. We have tested our formulae with 1D hydrodynamic loop simulations and find a very acceptable agreement. These results are important for developing physical insight about TNE and assessing how widespread it may be on the Sun.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    24
    Citations
    NaN
    KQI
    []