An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems

2021 
Path planning and formation control are both challenging and critical issues in robotics, which involve computing an optimal path from the initial position to target while keeping the desired formation. This paper studies the path planning and formation control problem for multiple unmanned aerial vehicles (multi-UAVs) in 3-D constrained space. Considering the local minimum of artificial potential function (APF), an effective improved artificial potential function (IAPF) based path planning approach is proposed for the multi-UAV systems. By introducing a rotating potential field, the UAVs can escape from the common local minimum and oscillations efficiently. Afterwards, by using the leader-follower model, a formation controller based on potential function method is developed to ensure that the follower UAVs keep the desired angles and distances with the leader, and a Lyapunov function is designed to analyze the closed-system stability. Finally, simulation studies under different environmental constraints confirm the efficiency of the proposed approaches in addressing the the path planning and formation control issues in 3-D space.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []