Using Polynomial Optimization to Solve the Fuel-Optimal Linear Impulsive Rendezvous Problem
2011
Nomenclature a = semi-major axis ; e = eccentricity ; ν = true anomaly ; φ(ν) = fundamental matrix of relative motion ; B(ν) = input matrix in the dynamic model of relative motion ; R(ν) = φ(ν)B(ν) = φ(ν)B(ν) = primer vector evolution matrix ; uf = φ(νf )Xf − φ(ν1)X1 6= 0 = boundary conditions ; N = number of velocity increments ; νi, ∀ i = 1, · · · , N = impulses application times ; ∆vi = impulse modulus at νi ;
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
20
Citations
NaN
KQI