Using Polynomial Optimization to Solve the Fuel-Optimal Linear Impulsive Rendezvous Problem

2011 
Nomenclature a = semi-major axis ; e = eccentricity ; ν = true anomaly ; φ(ν) = fundamental matrix of relative motion ; B(ν) = input matrix in the dynamic model of relative motion ; R(ν) = φ(ν)B(ν) = φ(ν)B(ν) = primer vector evolution matrix ; uf = φ(νf )Xf − φ(ν1)X1 6= 0 = boundary conditions ; N = number of velocity increments ; νi, ∀ i = 1, · · · , N = impulses application times ; ∆vi = impulse modulus at νi ;
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    20
    Citations
    NaN
    KQI
    []