Dynamics and kinetics of phase transition for regular AdS black holes in general relativity coupled to non-linear electrodynamics

2021 
Employing the free energy landscape, we study the phase transition and its dynamics for a class of regular black holes in Anti-de Sitter spacetime governed by the coupling of non-linear electrodynamics, which reduces to Hayward and Bardeen solutions for particular values of spacetime parameters. The Fokker-Planck equation is solved numerically by imposing the reflecting boundary condition and a suitable initial condition, using which, we investigate the probabilistic evolution of regular AdS black holes. In this approach, the on-shell Gibbs free energy is treated as a function of the radius of the event horizon, which happens to be the order parameter of the phase transition. The numerical solution is also obtained for the absorbing boundary condition. The dynamics of switching between the coexistence small black hole phase and large black hole phase due to the thermal fluctuation is probed by calculating the first passage time. The effect of temperature on the dynamical process is also investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []