Integrated 2D-Graded Index Plasmonic Lens on a Silicon Waveguide for Operation in the Near Infrared Domain

2017 
In this article we address the nanoscale engineering of the effective index of silicon on insulator waveguides by using plasmonic metasurface resonances to realize a graded index lens. We report the design, implementation, and experimental demonstration of this plasmonic metasurface-based graded index lens integrated on a silicon waveguide for operation in the near-infrared domain. The 2D-graded index lens consists of an array of gold cut wires fabricated on the top of a silicon waveguide. These gold cut wires modify locally the effective index of the silicon waveguide and allow the realization of this gradient lens. The reported solution represents a promising alternative to the bulky or multilayered metamaterials approach in the near IR domain. This enabling technology may have found its place in silicon photonic applications by exploiting the plasmonic resonances to control the light at nanoscale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    17
    Citations
    NaN
    KQI
    []