Fourier and Wavelet Analysis
2002
1 Metrie and Normed Spaces.- 1.1 Metrie Spaces.- 1.2 Normed Spaces.- 1.3 Inner Product Spaces.- 1.4 Orthogonality.- 1.5 Linear Isometry.- 1.6 Holder and Minkowski Inequalities Lpand lpSpaces..- 2 Analysis.- 2.1 Balls.- 2.2 Convergence and Continuity.- 2.3 Bounded Sets.- 2.4 Closure and Closed Sets.- 2.5 Open Sets.- 2.6 Completeness.- 2.7 Uniform Continuity.- 2.8 Compactness.- 2.9 Equivalent Norms.- 2.10 Direct Sums.- 3 Bases.- 3.1 Best Approximation.- 3.2 Orthogonal Complements and the Projection Theorem.- 3.3 Orthonormal Sequences.- 3.4 Orthonormal Bases.- 3.5 The Haar Basis.- 3.6 Unconditional Convergence.- 3.7 Orthogonal Direct Sums.- 3.8 Continuous Linear Maps.- 3.9 Dual Spaces.- 3.10 Adjoints.- 4 Fourier Series.- 4.1 Warmup.- 4.2 Fourier Sine Series and Cosine Series.- 4.3 Smoothness.- 4.4 The Riemann-Lebesgue Lemma.- 4.5 The Dirichlet and Fourier Kernels.- 4.6 Point wise Convergence of Fourier Series.- 4.7 Uniform Convergence.- 4.8 The Gibbs Phenomenon.- 4.9 - Divergent Fourier Series.- 4.10 Termwise Integration.- 4.11 Trigonometric vs. Fourier Series.- 4.12 Termwise Differentiation.- 4.13 Dido's Dilemma.- 4.14 Other Kinds of Summability.- 4.15 Fejer Theory.- 4.16 The Smoothing Effect of (C, 1) Summation.- 4.17 Weierstrass's Approximation Theorem.- 4.18 Lebesgue's Pointwise Convergence Theorem.- 4.19 Higher Dimensions.- 4.20 Convergence of Multiple Series.- 5 The Fourier Transform.- 5.1 The Finite Fourier Transform.- 5.2 Convolution on T.- 5.3 The Exponential Form of Lebesgue's Theorem.- 5.4 Motivation and Definition.- 5.5 Basics/Examplesv.- 5.6 The Fourier Transform and Residues.- 5.7 The Fourier Map.- 5.8 Convolution on R.- 5.9 Inversion, Exponential Form.- 5.10 Inversion, Trigonometric Form.- 5.11 (C, 1) Summability for Integrals.- 5.12 The Fejer-Lebesgue Inversion Theorem.- 5.13 Convergence Assistance.- 5.14 Approximate Identity.- 5.15 Transforms of Derivatives and Integrals.- 5.16 Fourier Sine and Cosine Transforms.- 5.17 Parseval's Identities.- 5.18 The L2Theory.- 5.19 The Plancherel Theorem.- 5.20 Point wise Inversion and Summability.- 5.21 - Sampling Theorem.- 5.22 The Mellin Transform.- 5.23 Variations.- 6 The Discrete and Fast Fourier Transforms.- 6.1 The Discrete Fourier Transform.- 6.2 The Inversion Theorem for the DFT.- 6.3 Cyclic Convolution.- 6.4 Fast Fourier Transform for N=2k.- 6.5 The Fast Fourier Transform for N=RC.- 7 Wavelets.- 7.1 Orthonormal Basis from One Function.- 7.2 Multiresolution Analysis.- 7.3 Mother Wavelets Yield Wavelet Bases.- 7.4 From MRA to Mother Wavelet.- 7.5 Construction of - Scaling Function with Compact Support.- 7.6 Shannon Wavelets.- 7.7 Riesz Bases and MRAs.- 7.8 Franklin Wavelets.- 7.9 Frames.- 7.10 Splines.- 7.11 The Continuous Wavelet Transform.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
149
Citations
NaN
KQI