Reversing the direction of heat flow using quantum correlations

2019 
Heat spontaneously flows from hot to cold in standard thermodynamics. However, the latter theory presupposes the absence of initial correlations between interacting systems. We here experimentally demonstrate the reversal of heat flow for two quantum correlated spins-1/2, initially prepared in local thermal states at different effective temperatures, employing a Nuclear Magnetic Resonance setup. We observe a spontaneous energy flow from the cold to the hot system. This process is enabled by a trade off between correlations and entropy that we quantify with information-theoretical quantities. These results highlight the subtle interplay of quantum mechanics, thermodynamics and information theory. They further provide a mechanism to control heat on the microscale. The presence of correlations can strongly affect the evolution of a quantum system. Here, the authors directly observe differences in the dynamics of two spins-1/2 systems in an NMR setup depending on the correlations of the initial state, including differences in energy flow and mutual information.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    82
    Citations
    NaN
    KQI
    []