Electrostatic control over optically-pumped hot electrons in optical gap antennas.

2020 
We investigate the influence of a static electric field on the incoherent nonlinear response of an unloaded electrically-contacted nanoscale optical gap antenna. Upon excitation by a tightly focused near-infrared femtosecond laser beam, a transient elevated temperature of the electronic distribution results in a broadband emission of nonlinear photoluminescence (N-PL). We demonstrate a modulation of the yield at which driving photons are frequency up-converted by means of an external control of the electronic surface charge density. We show that the electron temperature and consequently the N-PL intensity can be enhanced or reduced depending on the command polarity and the strength of the control static field. A modulation depth larger than 100\% is observed for activation voltages of a few volts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []