Low temperature reactivity in agglomerates containing iron oxide : Studies in the Ca(OH)2-C-Fe2O3 system

2011 
In this study, we have attempted to explain the complex reactions that occur during the dehydration of Ca(OH)2, in the presence of solid carbon and Fe2O3, in order to clarify their role as eventual precursors to the reduction and high temperature strength characteristics in feedstock agglomerates of iron and steelmaking by-products. A series of simultaneous thermo-gravimetric (TG), differential thermal analytic (DTA), and mass spectrometric (MS) tests were performed on agglomerated sample mixes of Ca(OH)2, C, and Fe2O3 to test the influence of heating rate and particle size on the transformations occurring below 1,073 K in inert atmosphere. The overall transformation begins with calcium hydroxide dehydration. Nucleation and growth of CaO grains during dehydration, as well as subsequent gasification of solid carbon, are highly dependent on the governing interstitial particle porosity and mildly dependent on the heating rate in and around agglomerates. The reduction of hematite in current agglomerates is, by association to preceding reactions, partly dependent on porosity and heating rate, but the mechanism of reduction was also found to be highly dependent on the particle size of iron oxides. Furthermore, in areas of intimate contact between CaO and iron oxide, a calcium ferrite phase appears in the form of angular and calcium-rich particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []