A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe

2021 
Abstract. Extreme convective events in the troposphere not only have immediate impacts on the surface, they can also influence the dynamics and composition of the lower stratosphere (LS). One major impact is the moistening of the LS by overshooting convection. This effect plays a crucial role in climate feedback as small changes of water vapor in the upper troposphere and lower stratosphere (UTLS) have a large impact on the radiation budget of the atmosphere. In this case study, we investigate water vapor injections into the LS by two consecutive convective events in the European mid-latitudes within the framework of the MOSES (Modular Observation Solutions for Earth Systems) measurement campaign during the early summer of 2019. Using balloon-borne instruments, rare measurements of the convective water vapor injection into the stratosphere were performed. The magnitude of the water vapor reached up to 12.1 ppmv with an estimated background value of 5 ppmv. Hence it is in the same order of magnitude as earlier reports of water vapor injection by convective overshooting above North America. However the overshooting took place in the extra-tropical stratosphere and has an impact on long-term water vapor mixing ratios in the stratosphere compared to the Monsoon-influenced region in North America. At the altitude of the measured injection, a sharp drop in a local ozone enhancement peak makes the observed composition of air very unique with high ozone up to 696 ppbv and high water vapor up to 12.1 ppmv. While ERA-Interim data does not show any signal of the convective overshoot, the measured values in the LS are underestimated by MLS satellite data and overestimated by ERA5 reanalysis data. Backward trajectories of the measured injected air masses reveal that the moistening of the LS took place several hours before the balloon launch. This is in good agreement with reanalyses and satellite data showing a strong change in the structure of isotherms, and a sudden and short-lived increase in potential vorticity at the altitude of the trajectory, as well as low cloud top brightness temperatures during the overshooting event.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []