Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts

2021 
Abstract A series of ZnO-ZrO2 solid solutions with different Zn contents were synthesized by the urea co-precipitation method, which were coupled with H-ZSM-5 zeolite to form bifunctional catalysts. As a new benzene alkylation reagent, syngas was used instead of methanol to realize the efficient conversion of syngas and benzene into toluene and xylene. A suitable ratio of ZnO-ZrO2 led to the significant improvement in the catalytic performance, and a suitable amount of acid helped to increase the selectivity of toluene/xylene and reduce the selectivity of the by-products ethylbenzene and C9+ aromatics. The highest benzene conversion of 89.2% and toluene/xylene selectivity of 88.7% were achieved over 10% ZnO-ZrO2H hence, the conversion of benzene is higher. H-ZSM-35 and H-MOR zeolites exhibited small eight-membered-ring channels, which were not conducive to the passage of benzene; hence, the by-product ethylbenzene exhibits a higher selectivity. The distance between the active centers of the bifunctional catalysts was the main factor affecting the catalytic performance, and the powder mixing method was more conducive to the conversion of syngas and benzene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []