Characterization of an autoreduction pathway for the [Fe4S4]3+ cluster of mutant Chromatium vinosum high-potential iron proteins. Site-directed mutagenesis studies to probe the role of phenylalanine 66 in defining the stability of the [Fe4S4] center provide evidence for oxidative degradation via a [Fe3S4] cluster.

1996 
A number of point mutations of the conserved aromatic residue phenylalanine 66 (Phe66Tyr, -Asn, -Cys, -Ser) in Chromatium vinosum high-potential iron sulfur protein have been examined with the aim of understanding the functional role of this residue. Nonconservative replacements with polar residues have a minimal effect on the midpoint potential of the [Fe4S4]3+/2+ cluster, typically <+25 mV, with a maximum change of +40 mV for Phe66Asn. With the exception of the Phe66Tyr mutant, the oxidized state was found to be unstable relative to the recombinant native, with regeneration of the reduced state. The pathway for this transformation involves degradation of the cluster in a fraction of the sample, which provides the reducing equivalents required to bring about reduction of the remainder of the sample. This degradative reaction proceeds through a transient [Fe3S4]+ intermediate that is characterized by typical g values and power saturation behavior and is prompted by the increased solvent accessibility of t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    15
    Citations
    NaN
    KQI
    []