Inference on Partially Observed Quasi-stationary Markov Chains With Applications to Multistate Population Models

2012 
If the full capture histories of captured individuals are available, inferences on multistate open population models may be conducted using the well known Arnason–Schwarz model. However, data of this detail is not always available. It is well known that inference on the transition probabilities of a Markov chain may be conducted using aggregate data and we extend this approach to aggregate data on multistate open population models. We show that for parameters to be identifiable we need to augment the aggregate data and we achieve this by batch marking a cohort of individuals according to their initial state, so that the batch marking augments the aggregate data. Model performance is examined by conducting several simulation studies and the model is applied to a real data set where full capture histories are available so it may be compared with the Arnason–Schwarz estimates. This article has supplementary material online.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []