An integrated approach to knowledge-driven structure-based virtual screening.
2014
In many practical applications of structure-based virtual screening (VS) ligands are already known. This circumstance requires that the obtained hits need to satisfy initial made expectations i.e., they have to fulfill a predefined binding pattern and/or lie within a predefined physico-chemical property range. Based on the RApid Index-based Screening Engine (RAISE) approach, we introduce cRAISE—a user-controllable structure-based VS method. It efficiently realizes pharmacophore-guided protein-ligand docking to assess the library content but thereby concentrates only on molecules that have a chance to fulfill the given binding pattern. In order to focus only on hits satisfying given molecular properties, library profiles can be utilized to simultaneously filter compounds. cRAISE was evaluated on a range of strict to rather relaxed hypotheses with respect to its capability to guide binding-mode predictions and VS runs. The results reveal insights into a guided VS process. If a pharmacophore model is chosen appropriately, a binding mode below 2 A is successfully reproduced for 85 % of well-prepared structures, enrichment is increased up to median AUC of 73 %, and the selectivity of the screening process is significantly enhanced leading up to seven times accelerated runtimes. In general, cRAISE supports a versatile structure-based VS approach allowing to assess hypotheses about putative ligands on a large scale.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
5
Citations
NaN
KQI