The Evolutionary Ecology of Age at Natural Menopause: Implications for Public Health

2020 
Evolutionary perspectives on menopause have focused on explaining why early reproductive cessation in females has emerged and why it is rare throughout the animal kingdom, but less attention has been given to exploring patterns of diversity in age at natural menopause. In this paper, we aim to generate new hypotheses for understanding human patterns of diversity in this trait, defined as age at final menstrual period. To do so, we develop a multilevel, interdisciplinary framework, combining proximate, physiological understandings of ovarian ageing with ultimate, evolutionary perspectives on ageing. We begin by reviewing known patterns of diversity in age at natural menopause in humans, and highlight issues in how menopause is currently defined and measured. Second, we consider together ultimate explanations of menopause timing and proximate understandings of ovarian ageing. We find that ovarian ageing is highly constrained by ageing of the follicle – the somatic structure containing the oocyte – suggesting that menopause timing might be best understood as a by-product of ageing rather than a facultative adaptation. Third, we investigate whether the determinants of somatic senescence also underpin menopause timing. We show that diversity in age at menopause can be, at least partly, explained by the genetic, ecological and life-history determinants of somatic ageing. The public health implications of rethinking menopause as the by-product rather than the catalyst of biological ageing are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    0
    Citations
    NaN
    KQI
    []