Gamma-ray Explosion in Multiple Compton Scattering Regime

2016 
Gamma-ray explosion from near critical density (NCD) target irradiated by four symmetrical imploding laser pulses is numerically investigated. With peak intensities about $10^{23}$ W/cm$^2$, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counter-propagating laser, the accelerated electron will be trapped in the optical lattice or the electromagnetic standing waves (SW) created by the coherent overlapping of the laser pulses, and meanwhile emit gamma-ray photon in Multiple Compton Scattering regime, where electron acts as a medium to transfer energy from laser to gamma-ray. The energy conversion rate from laser pulses to gamma-ray can be as high as around 50\%. It may become one of the most efficient gamma-ray sources in laboratory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []