Effect of Sulfur and Nitrogen co-Doped Graphene Quantum Dots on Co3O4 Nanoparticles as Solar Induced Photocatalyst

2021 
The photocatalyst process is considered the most promising method for the removal of water contamination. For excellent chemical and structural properties of Co3O4 nanoparticles, various Co3O4-based nanostructures can be applied as a photocatalyst. In this work, carbon quantum dots is prepared via an eco-friendly process and linked to Co3O4 effectively. X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The photocatalyst process reveals that prepared nanocomposites can be degraded methylene blue under solar irradiation strongly. Results showed that methylene blue and methyl orange are degraded via 64% and 56% efficiency after 70 minutes of irradiation under visible irradiation using Co3O4 nanoparticles respectively. The photocatalytic performance of Co3O4 nanoparticles was improved via linking SN-GQDs and formation SN-GQDs/ Co3O4 nanocomposites. UV-Vis analysis revealed that charge transfer from Co3O4 to SN-GQDs and prevent charge recombination in Co3O4 which leads to better photocatalytic efficiency. This study introduces SN-GQDs/ Co3O4 nanocomposites as a novel and green photocatalyst agent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []